z-logo
Premium
Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillin‐binding protein PonA1 reveal potential mechanisms of antibiotic resistance
Author(s) -
Filippova Ekaterina V.,
Kieser Karen J.,
Luan ChiHao,
Wawrzak Zdzislaw,
Kiryukhina Olga,
Rubin Eric J.,
Anderson Wayne F.
Publication year - 2016
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/febs.13738
Subject(s) - penicillin binding proteins , mycobacterium tuberculosis , penicillin , microbiology and biotechnology , antibiotics , protein data bank (rcsb pdb) , tuberculosis , biology , mycobacterium smegmatis , biochemistry , medicine , pathology
Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic‐resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin‐binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor‐free form and in complex with penicillin V are reported. We used site‐directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of β‐lactams. Structural comparison of the PonA1 apo‐form and the antibiotic‐bound form shows that binding of penicillin V induces conformational changes in the position of the loop β4′‐α3 surrounding the penicillin‐binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested β‐lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall‐targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. Database Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here