z-logo
open-access-imgOpen Access
Epstein‐Barr virus‐positive gastric cancer involves enhancer activation through activating transcription factor 3
Author(s) -
Asakawa Yuta,
Okabe Atsushi,
Fukuyo Masaki,
Li Wenzhe,
Ikeda Eriko,
Mano Yasunobu,
Funata Sayaka,
Namba Hiroe,
Fujii Takahiro,
Kita Kazuko,
Matsusaka Keisuke,
Kaneda Atsushi
Publication year - 2020
Publication title -
cancer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.035
H-Index - 141
eISSN - 1349-7006
pISSN - 1347-9032
DOI - 10.1111/cas.14370
Subject(s) - enhancer , biology , chromatin immunoprecipitation , microbiology and biotechnology , transcription factor , carcinogenesis , downregulation and upregulation , cancer research , gene , gene expression , promoter , genetics
Abstract Epstein‐Barr virus (EBV) is associated with particular forms of gastric cancer (GC). We previously showed that EBV infection into gastric epithelial cells induced aberrant DNA hypermethylation in promoter regions and silencing of tumor suppressor genes. We here undertook integrated analyses of transcriptome and epigenome alteration during EBV infection in gastric cells, to investigate activation of enhancer regions and related transcription factors (TFs) that could contribute to tumorigenesis. Formaldehyde‐assisted isolation of regulatory elements (FAIRE) sequencing (‐seq) data revealed 19 992 open chromatin regions in putative H3K4me1 + H3K4me3 − enhancers in EBV‐infected MKN7 cells (MKN7_EB), with 10 260 regions showing increase of H3K27ac. Motif analysis showed candidate TFs, eg activating transcription factor 3 (ATF3), to possibly bind to these activated enhancers. ATF3 was considerably upregulated in MKN7_EB due to EBV factors including EBV‐determined nuclear antigen 1 (EBNA1), EBV‐encoded RNA 1, and latent membrane protein 2A. Expression of mutant EBNA1 decreased copy number of the EBV genome, resulting in relative downregulation of ATF3 expression. Epstein‐Barr virus was also infected into normal gastric epithelial cells, GES1, confirming upregulation of ATF3 . Chromatin immunoprecipitation‐seq analysis on ATF3 binding sites and RNA‐seq analysis on ATF3 knocked‐down MKN7_EB revealed 96 genes targeted by ATF3‐activating enhancers, which are related with cancer hallmarks, eg evading growth suppressors. These 96 ATF3 target genes were significantly upregulated in MKN7_EB compared with MKN7 and significantly downregulated when ATF3 was knocked down in EBV‐positive GC cells SNU719 and NCC24. Knockdown of ATF3 in EBV‐infected MKN7, SNU719, and NCC24 cells all led to significant decrease of cellular growth through an increase of apoptotic cells. These indicate that enhancer activation though ATF3 might contribute to tumorigenesis of EBV‐positive GC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here