z-logo
Premium
A Computational Model of Heat Loss and Water Condensation on the Gas‐Side of Blood Oxygenators
Author(s) -
Gómez Bardón Ricardo,
Dubini Gabriele,
Pennati Giancarlo
Publication year - 2018
Publication title -
artificial organs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.684
H-Index - 76
eISSN - 1525-1594
pISSN - 0160-564X
DOI - 10.1111/aor.13277
Subject(s) - blood loss , condensation , environmental science , heat exchanger , medicine , surgery , thermodynamics , physics
Clinical observation of condensation at the gas flow exit of blood oxygenators is a recurrent event during cardiopulmonary bypass. These devices consist of a bundle of hollow fibers made of a microporous membrane that allows the exchange of O 2 and CO 2 . The fibers carry a gas mixture inside (intraluminal flow), while blood flows externally around them (extraluminal flow). Although different studies described this effect in the past, the specific role of the different sections of the device requires further analysis, and the total condensation rate remains unquantified. In this study, a closer look is taken at the transition of gas between the oxygenation bundle and the external room air. A method is proposed to estimate the total condensate output, combining computational fluid dynamics (CFD) of thermal distribution and a simplified 1D model of water vapor saturation of gas. The influence of a number of different parameters is analyzed, regarding material properties, environmental conditions, and clinical use. Results show that condensation rate could vary in a 30‐fold range within reasonably small variations of the different variables considered.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here