z-logo
open-access-imgOpen Access
Intrusion Detection Model for Internet of Vehicles Using GRIPCA and OWELM
Author(s) -
Kaijun Zhang,
Jiayu Yang,
Yangfei Shao,
Lehua Hu,
Wei Ou,
Wenbao Han,
Qionglu Zhang
Publication year - 2024
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2024.3368392
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
With the rapid development of the Internet of Vehicles, a large amount of vehicle network data is being generated. The large amount of data presents network communication security challenges. Although intrusion detection technology can assist in safeguarding the system from malicious attacks, the substantial data generated within the vehicle network poses time-consuming detection challenges. Thus, we propose an intrusion detection model for the Internet of Vehicles, utilizing Gaussian random incremental principal component analysis (GRIPCA) and optimal weighted extreme learning machine (OWELM). First, we utilize GRIPCA to reduce data redundancy by projecting high-dimensional data into a low-dimensional space, thus reducing storage costs. Then, we utilize the dynamic inertia weight particle swarm optimization (DPSO) to optimize the parameters of the weighted extreme learning machine (WELM) to achieve the best performance. We utilize the NSL-KDD and CIC-IDS-2017 datasets to perform experiments and compare the results with other techniques. The experimental results show the excellence of the proposed model, achieving an accuracy rate of 91.02% on the NSL KDD dataset and 94.67% on the CIC-IDS-2017 dataset.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here