Research Library

open-access-imgOpen AccessBeyond Bits: A Review of Quantum Embedding Techniques for Efficient Information Processing
Author(s)
Mansoor A. Khan,
Muhammad N. Aman,
Biplab Sikdar
Publication year2024
Publication title
ieee access
Resource typeMagazines
PublisherIEEE
The existing body of research on quantum embedding techniques is not only confined in scope but also lacks a comprehensive understanding of the intricacies of the quantum embedding process. To address this critical issue, this article explores quantum encoding schemes, uncovering valuable insights into their encoding algorithms from theoretical foundations to a mathematical perspective, as well as practical applications. Initially, the article briefly overviews classical computing and the limitations associated with classical bits in representing and processing complex information. Next, the article scrutinizes a variety of quantum embedding patterns, including basis encoding, amplitude encoding, Qsample encoding, angle encoding, quantum associative memory encoding, quantum random access memory, superdense encoding, Hamiltonian encoding, and others. In addition, each technique is accompanied by mathematical formulas and examples illustrating how each strategy can be applied. Finally, the article provides a comparative analysis of different quantum embedding/encoding methods, outlining their strengths and limitations. Overall, this insightful article highlights the potential of quantum encoding techniques for efficient information processing beyond classical bits, thereby facilitating scientists and design engineers in selecting the most appropriate encoding technique to develop smart algorithms for revolutionizing the field of quantum computing.
Subject(s)aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Keyword(s)Encoding, Quantum computing, Information processing, Quantum circuit, Performance analysis, Encoding patterns, qubits, quantum computing, quantum information processing, quantum circuits
Language(s)English
SCImago Journal Rank0.587
H-Index127
eISSN2169-3536
DOI10.1109/access.2024.3382150

Seeing content that should not be on Zendy? Contact us.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here