z-logo
open-access-imgOpen Access
Bisphenol F Exposure in Adolescent Heterogeneous Stock Rats Affects Growth and Adiposity
Author(s) -
Valerie Wagner,
Karen C Clark,
Leslie Carrillo-Sáenz,
Katie Holl,
Miriam VélezBermúdez,
Derek Simonsen,
Justin L. Grobe,
Kai Wang,
Andrew L. Thurman,
Leah C. Solberg Woods,
HansJoachim Lehmler,
Anne E. Kwitek
Publication year - 2021
Publication title -
toxicological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.352
H-Index - 183
eISSN - 1096-6080
pISSN - 1096-0929
DOI - 10.1093/toxsci/kfab035
Subject(s) - endocrinology , medicine , urine , population , body mass index , biology , physiology , environmental health
Bisphenol F (BPF) is increasingly substituting bisphenol A in manufacturing polycarbonates and consumer products. The cardiometabolic effects of BPF in either humans or model organisms are not clear, and no studies to date have investigated the role of genetic background on susceptibility to BPF-induced cardiometabolic traits. The primary goal of this project was to determine if BPF exposure influences growth and adiposity in male N:NIH heterogeneous stock (HS) rats, a genetically heterogeneous population. Littermate pairs of male HS rats were randomly exposed to either vehicle (0.1% ethanol) or 1.125 µg/ml BPF in 0.1% ethanol for 5 weeks in drinking water starting at 3 weeks-of-age. Water consumption and body weight was measured weekly, body composition was determined using nuclear magnetic resonance, urine and feces were collected in metabolic cages, and blood and tissues were collected at the end of the study. BPF-exposed rats showed significantly increased body growth and abdominal adiposity, risk factors for cardiometabolic disease. Urine output was increased in BPF-exposed rats, driving a trend in increased creatinine clearance. We also report the first relationship between a bisphenol metabolizing enzyme and a bisphenol-induced phenotype. Preliminary heritability estimates of significant phenotypes suggest that BPF exposure may alter trait variation. These findings support BPF exposure as a cardiometabolic disease risk factor and indicate that the HS rat will be a useful model for dissecting gene by BPF interactions on metabolic health.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom