Open Access
The fungal CCAAT-binding complex and HapX display highly variable but evolutionary conserved synergetic promoter-specific DNA recognition
Author(s) -
Tatsuhiko Furukawa,
Mareike Thea Scheven,
Matthias Misslinger,
Can Zhao,
Sandra Hoefgen,
Fabio Gsaller,
Jeffrey Lau,
Christoph Jöchl,
Ian J. Donaldson,
Vito Valiante,
Axel A. Brakhage,
Hubertus Haas,
Peter Hortschansky
Publication year - 2020
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkaa109
Subject(s) - biology , genetics , transcription factor , conserved sequence , promoter , dna , sequence motif , binding site , dna binding site , gene , gene expression , base sequence
To sustain iron homeostasis, microorganisms have evolved fine-tuned mechanisms for uptake, storage and detoxification of the essential metal iron. In the human pathogen Aspergillus fumigatus, the fungal-specific bZIP-type transcription factor HapX coordinates adaption to both iron starvation and iron excess and is thereby crucial for virulence. Previous studies indicated that a HapX homodimer interacts with the CCAAT-binding complex (CBC) to cooperatively bind bipartite DNA motifs; however, the mode of HapX-DNA recognition had not been resolved. Here, combination of in vivo (genetics and ChIP-seq), in vitro (surface plasmon resonance) and phylogenetic analyses identified an astonishing plasticity of CBC:HapX:DNA interaction. DNA motifs recognized by the CBC:HapX protein complex comprise a bipartite DNA binding site 5′-CSAATN12RWT-3′ and an additional 5′-TKAN-3′ motif positioned 11–23 bp downstream of the CCAAT motif, i.e. occasionally overlapping the 3′-end of the bipartite binding site. Phylogenetic comparison taking advantage of 20 resolved Aspergillus species genomes revealed that DNA recognition by the CBC:HapX complex shows promoter-specific cross-species conservation rather than regulon-specific conservation. Moreover, we show that CBC:HapX interaction is absolutely required for all known functions of HapX. The plasticity of the CBC:HapX:DNA interaction permits fine tuning of CBC:HapX binding specificities that could support adaptation of pathogens to their host niches.