z-logo
open-access-imgOpen Access
An Experimental Test of Adaptive Introgression in Locally Adapted Populations of Splash Pool Copepods
Author(s) -
Joanna S. Griffiths,
Yasmeen Kawji,
Morgan W. Kelly
Publication year - 2020
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msaa289
Subject(s) - biology , introgression , genetics , allele , population , gene , genome , adaptation (eye) , local adaptation , evolutionary biology , demography , neuroscience , sociology
As species struggle to keep pace with the rapidly warming climate, adaptive introgression of beneficial alleles from closely related species or populations provides a possible avenue for rapid adaptation. We investigate the potential for adaptive introgression in the copepod, Tigriopus californicus, by hybridizing two populations with divergent heat tolerance limits. We subjected hybrids to strong heat selection for 15 generations followed by whole-genome resequencing. Utilizing a hybridize evolve and resequence (HER) technique, we can identify loci responding to heat selection via a change in allele frequency. We successfully increased the heat tolerance (measured as LT50) in selected lines, which was coupled with higher frequencies of alleles from the southern (heat tolerant) population. These repeatable changes in allele frequencies occurred on all 12 chromosomes across all independent selected lines, providing evidence that heat tolerance is polygenic. These loci contained genes with lower protein-coding sequence divergence than the genome-wide average, indicating that these loci are highly conserved between the two populations. In addition, these loci were enriched in genes that changed expression patterns between selected and control lines in response to a nonlethal heat shock. Therefore, we hypothesize that the mechanism of heat tolerance divergence is explained by differential gene expression of highly conserved genes. The HER approach offers a unique solution to identifying genetic variants contributing to polygenic traits, especially variants that might be missed through other population genomic approaches.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here