z-logo
open-access-imgOpen Access
Phylogenetics Identifies Two Eumetazoan TRPM Clades and an Eighth TRP Family, TRP Soromelastatin (TRPS)
Author(s) -
Nathaniel J. Himmel,
Thomas R. Gray,
Daniel N. Cox
Publication year - 2020
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msaa065
Subject(s) - biology , phylogenetics , evolutionary biology , phylum , clade , most recent common ancestor , transient receptor potential channel , phylogenetic tree , zoology , genetics , gene , receptor
Transient receptor potential melastatins (TRPMs) are most well known as cold and menthol sensors, but are in fact broadly critical for life, from ion homeostasis to reproduction. Yet, the evolutionary relationship between TRPM channels remains largely unresolved, particularly with respect to the placement of several highly divergent members. To characterize the evolution of TRPM and like channels, we performed a large-scale phylogenetic analysis of >1,300 TRPM-like sequences from 14 phyla (Annelida, Arthropoda, Brachiopoda, Chordata, Cnidaria, Echinodermata, Hemichordata, Mollusca, Nematoda, Nemertea, Phoronida, Priapulida, Tardigrada, and Xenacoelomorpha), including sequences from a variety of recently sequenced genomes that fill what would otherwise be substantial taxonomic gaps. These findings suggest: 1) the previously recognized TRPM family is in fact two distinct families, including canonical TRPM channels and an eighth major previously undescribed family of animal TRP channel, TRP soromelastatin; 2) two TRPM clades predate the last bilaterian–cnidarian ancestor; and 3) the vertebrate–centric trend of categorizing TRPM channels as 1–8 is inappropriate for most phyla, including other chordates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here