z-logo
open-access-imgOpen Access
Conserved UBE3A subcellular distribution between human and mice is facilitated by non-homologous isoforms
Author(s) -
F. Isabella Zampeta,
Monica Sonzogni,
Eva Niggl,
Bas Lendemeijer,
Hilde Smeenk,
Femke M.S. de Vrij,
Steven A. Kushner,
Ben Distel,
Ype Elgersma
Publication year - 2020
Publication title -
human molecular genetics online/human molecular genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.811
H-Index - 276
eISSN - 1460-2083
pISSN - 0964-6906
DOI - 10.1093/hmg/ddaa194
Subject(s) - biology , gene isoform , homologous chromosome , genetics , conserved sequence , distribution (mathematics) , homologous recombination , microbiology and biotechnology , gene , peptide sequence , mathematical analysis , mathematics
The human UBE3A gene, which is essential for normal neurodevelopment, encodes three Ubiquitin E3 ligase A (UBE3A) protein isoforms. However, the subcellular localization and relative abundance of these human UBE3A isoforms are unknown. We found, as previously reported in mice, that UBE3A is predominantly nuclear in human neurons. However, this conserved subcellular distribution is achieved by strikingly distinct cis-acting mechanisms. A single amino-acid deletion in the N-terminus of human hUBE3A-Iso3, which is homologous to cytosolic mouse mUBE3A-Iso2, results in its translocation to the nucleus. This singe amino-acid deletion is shared with apes and Old World monkeys and was preceded by the appearance of the cytosolic hUBE3A-Iso2 isoform. This hUBE3A-Iso2 isoform arose after the lineage of New World monkeys and Old World monkeys separated from the Tarsiers (Tarsiidae). Due to the loss of a single nucleotide in a non-coding exon, this exon became in frame with the remainder of the UBE3A protein. RNA-seq analysis of human brain samples showed that the human UBE3A isoforms arise by alternative splicing. Consistent with the predominant nuclear enrichment of UBE3A in human neurons, the two nuclear-localized isoforms, hUBE3A-Iso1 and -Iso3, are the most abundantly expressed isoforms of UBE3A, while hUBE3A-Iso2 maintains a small pool of cytosolic UBE3A. Our findings provide new insight into UBE3A localization and evolution and may have important implications for gene therapy approaches in Angelman syndrome.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here