z-logo
open-access-imgOpen Access
Reduced Hippocampal Dendrite Branching, Spine Density and Neurocognitive Function in Premature Rabbits, and Reversal with Estrogen or TrkB Agonist Treatment
Author(s) -
Damon Klebe,
Mahima Tibrewal,
Deep Sharma,
Rachna Vanaparthy,
Sunil Krishna,
Merina Varghese,
Bokun Cheng,
Peter R. Mouton,
Jana Velı́šková,
Kostantin Dobrenis,
Patrick R. Hof,
Praveen Ballabh
Publication year - 2019
Publication title -
cerebral cortex
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.694
H-Index - 250
eISSN - 1460-2199
pISSN - 1047-3211
DOI - 10.1093/cercor/bhz033
Subject(s) - dendritic spine , medicine , hippocampal formation , neurocognitive , tropomyosin receptor kinase b , agonist , premature birth , gestation , pregnancy , cognition , receptor , neurotrophic factors , biology , genetics , psychiatry
Preterm-born children suffer from neurological and behavioral disorders. Herein, we hypothesized that premature birth and non-maternal care of preterm newborns might disrupt neurobehavioral function, hippocampal dendritic arborization, and dendritic spine density. Additionally, we assessed whether 17β-estradiol (E2) replacement or the TrkB receptor agonist, 7,8-dihydroxyflavone (DHF), would reverse compromised dendritic development and cognitive function in preterm newborns. These hypotheses were tested by comparing preterm (E28.5) rabbit kits cared and gavage-fed by laboratory personnel and term-kits reared and breast-fed by their mother doe at an equivalent postconceptional age. Neurobehavioral tests showed that both premature-birth and formula-feeding with non-maternal care led to increased anxiety behavior, poor social interaction, and lack of novelty preference compared with term-kits. Dendritic branching and number of total or mushroom dendritic spines were reduced in the CA1 field of preterm-kits compared with term controls. While CDC42 and Rac1/2/3 expression levels were lower, RhoA-activity was higher in preterm-kits compared with term controls. Both E2 and DHF treatment reversed prematurity-induced reduction in spine density, reduced total RhoA-GTPase levels, and enhanced cognitive function. Hence, prematurity and non-maternal care result in cognitive deficits, and reduced dendritic arbors and spines in CA1. E2 replacement or DHF treatment might reverse changes in dendritic spines and improve neurodevelopment in premature infants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here