z-logo
open-access-imgOpen Access
Decision Signals in the Local Field Potentials of Early and Mid-Level Macaque Visual Cortex
Author(s) -
Aravind Krishna,
Seiji Tanabe,
Adam Kohn
Publication year - 2020
Publication title -
cerebral cortex
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.694
H-Index - 250
eISSN - 1460-2199
pISSN - 1047-3211
DOI - 10.1093/cercor/bhaa218
Subject(s) - local field potential , macaque , visual cortex , perception , neuroscience , sensory system , computer science , artificial intelligence , pattern recognition (psychology) , population , neural ensemble , psychology , medicine , environmental health
The neural basis of perceptual decision making has typically been studied using measurements of single neuron activity, though decisions are likely based on the activity of large neuronal ensembles. Local field potentials (LFPs) may, in some cases, serve as a useful proxy for population activity and thus be useful for understanding the neural basis of perceptual decision making. However, little is known about whether LFPs in sensory areas include decision-related signals. We therefore analyzed LFPs recorded using two 48-electrode arrays implanted in primary visual cortex (V1) and area V4 of macaque monkeys trained to perform a fine orientation discrimination task. We found significant choice information in low (0-30 Hz) and higher (70-500 Hz) frequency components of the LFP, but little information in gamma frequencies (30-70 Hz). Choice information was more robust in V4 than V1 and stronger in LFPs than in simultaneously measured spiking activity. LFP-based choice information included a global component, common across electrodes within an area. Our findings reveal the presence of robust choice-related signals in the LFPs recorded in V1 and V4 and suggest that LFPs may be a useful complement to spike-based analyses of decision making.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here