z-logo
open-access-imgOpen Access
Network-based identification of key master regulators associated with an immune-silent cancer phenotype
Author(s) -
Raghvendra Mall,
Mohamad Saad,
Jessica Roelands,
Darawan Rinchai,
Khalid Kunji,
Hossam Almeer,
Wouter Hendrickx,
Francesco M. Marincola,
Michele Ceccarelli,
Davide Bedognetti
Publication year - 2021
Publication title -
briefings in bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.204
H-Index - 113
eISSN - 1477-4054
pISSN - 1467-5463
DOI - 10.1093/bib/bbab168
Subject(s) - immune system , biology , computational biology , tigit , immunotherapy , phenotype , regulon , cancer immunology , cancer , gene , immunology , bioinformatics , regulation of gene expression , genetics
A cancer immune phenotype characterized by an active T-helper 1 (Th1)/cytotoxic response is associated with responsiveness to immunotherapy and favorable prognosis across different tumors. However, in some cancers, such an intratumoral immune activation does not confer protection from progression or relapse. Defining mechanisms associated with immune evasion is imperative to refine stratification algorithms, to guide treatment decisions and to identify candidates for immune-targeted therapy. Molecular alterations governing mechanisms for immune exclusion are still largely unknown. The availability of large genomic datasets offers an opportunity to ascertain key determinants of differential intratumoral immune response. We follow a network-based protocol to identify transcription regulators (TRs) associated with poor immunologic antitumor activity. We use a consensus of four different pipelines consisting of two state-of-the-art gene regulatory network inference techniques, regularized gradient boosting machines and ARACNE to determine TR regulons, and three separate enrichment techniques, including fast gene set enrichment analysis, gene set variation analysis and virtual inference of protein activity by enriched regulon analysis to identify the most important TRs affecting immunologic antitumor activity. These TRs, referred to as master regulators (MRs), are unique to immune-silent and immune-active tumors, respectively. We validated the MRs coherently associated with the immune-silent phenotype across cancers in The Cancer Genome Atlas and a series of additional datasets in the Prediction of Clinical Outcomes from Genomic Profiles repository. A downstream analysis of MRs specific to the immune-silent phenotype resulted in the identification of several enriched candidate pathways, including NOTCH1, TGF-$\beta $, Interleukin-1 and TNF-$\alpha $ signaling pathways. TGFB1I1 emerged as one of the main negative immune modulators preventing the favorable effects of a Th1/cytotoxic response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here