Open Access
A short C-terminal peptide in Gγ regulates Gβγ signaling efficacy
Author(s) -
Mithila Tennakoon,
Kanishka Senarath,
Dinesh Kankanamge,
Deborah N. Chadee,
Ajith Karunarathne
Publication year - 2021
Publication title -
molecular biology of the cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.463
H-Index - 225
eISSN - 1939-4586
pISSN - 1059-1524
DOI - 10.1091/mbc.e20-11-0750
Subject(s) - biology , peptide , terminal (telecommunication) , microbiology and biotechnology , signal transduction , biochemistry , telecommunications , computer science
G protein beta-gamma (Gβγ) subunits anchor to the plasma membrane (PM) through the carboxy-terminal (CT) prenyl group in Gγ. This interaction is crucial for the PM localization and functioning of Gβγ, allowing GPCR-G protein signaling to proceed. The diverse Gγ family has 12 members, and we have recently shown that the signaling efficacies of major Gβγ effectors are Gγ-type dependent. This dependency is due to the distinct series of membrane-interacting abilities of Gγ. However, the molecular process allowing for Gβγ subunits to exhibit a discrete and diverse range of Gγ-type-dependent membrane affinities is unclear and cannot be explained using only the type of prenylation. The present work explores the unique designs of membrane-interacting CT residues in Gγ as a major source for this Gγ-type-dependent Gβγ signaling. Despite the type of prenylation, the results show signaling efficacy at the PM, and associated cell behaviors of Gβγ are governed by crucially located specific amino acids in the five to six residue preprenylation region of Gγ. The provided molecular picture of Gγ-membrane interactions may explain how cells gain Gγ-type-dependent G protein-GPCR signaling as well as how Gβγ elicits selective signaling at various subcellular compartments.