Open Access
Nuclear receptor LXRβ controls fitness and functionality of activated T cells
Author(s) -
Anthony Michaels,
Clarissa Campbell,
Regina Bou Puerto,
Alexander Y. Rudensky
Publication year - 2020
Publication title -
the journal of experimental medicine/the journal of experimental medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.483
H-Index - 448
eISSN - 1540-9538
pISSN - 0022-1007
DOI - 10.1084/jem.20201311
Subject(s) - liver x receptor , biology , t cell , microbiology and biotechnology , immune system , nuclear receptor , immunology , transcription factor , biochemistry , gene
T cells increase cholesterol biosynthesis upon activation to generate substrates for cellular growth and proliferation. The ubiquitously expressed liver X receptor β (LXRβ) encoded by the Nr1h2 gene is a critical regulator of cholesterol homeostasis in mammalian cells; however, its cell-intrinsic role in T cell biology remains poorly understood. We report that ablation of LXRβ in T cells leads to spontaneous T cell activation and T lymphocytopenia. Unexpectedly, analysis of mixed bone marrow chimeric mice revealed a cell-autonomous survival defect that reduced the fitness of LXRβ-deficient effector T cells, suggesting that the heightened immune activation in mice harboring LXRβ-deficient T cells was due to impaired regulatory T (T reg) cell functionality. Indeed, we found that single-copy deletion of Nr1h2 in T reg cells disrupted activated T reg cell metabolism and fitness and resulted in early-onset fatal autoimmune disease. Our study demonstrated an indispensable requirement for T reg cell–intrinsic LXRβ function in immune homeostasis and provides a basis for immunological therapies through targeting of this receptor.