
Translational regulation in the brain by TDP-43 phase separation
Author(s) -
Ju Gao,
Gaofeng Wang,
Xiaojia Ren,
Justin Dunn,
Ariele Peters,
Masaru Miyagi,
Hisashi Fujioka,
Fuqing Zhao,
Candice C. Askwith,
Jingjing Liang,
Xinglong Wang
Publication year - 2021
Publication title -
the journal of cell biology/the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.202101019
Subject(s) - biology , neurodegeneration , microbiology and biotechnology , translation (biology) , translational regulation , neuroscience , genetics , messenger rna , medicine , gene , disease
The in vivo physiological function of liquid–liquid phase separation (LLPS) that governs non–membrane-bound structures remains elusive. Among LLPS-prone proteins, TAR DNA-binding protein of 43 kD (TDP-43) is under intense investigation because of its close association with neurological disorders. Here, we generated mice expressing endogenous LLPS-deficient murine TDP-43. LLPS-deficient TDP-43 mice demonstrate impaired neuronal function and behavioral abnormalities specifically related to brain function. Brain neurons of these mice, however, did not show TDP-43 proteinopathy or neurodegeneration. Instead, the global rate of protein synthesis was found to be greatly enhanced by TDP-43 LLPS loss. Mechanistically, TDP-43 LLPS ablation increased its association with PABPC4, RPS6, RPL7, and other translational factors. The physical interactions between TDP-43 and translational factors relies on a motif, the deletion of which abolished the impact of LLPS-deficient TDP-43 on translation. Our findings show a specific physiological role for TDP-43 LLPS in the regulation of brain function and uncover an intriguing novel molecular mechanism of translational control by LLPS.