Premium
Southern Ocean Biogeochemical Float Deployment Strategy, With Example From the Greenwich Meridian Line (GO‐SHIP A12)
Author(s) -
Talley L. D.,
Rosso I.,
Kamenkovich I.,
Mazloff M. R.,
Wang J.,
Boss E.,
Gray A. R.,
Johnson K. S.,
Key R. M.,
Riser S. C.,
Williams N. L.,
Sarmiento J. L.
Publication year - 2019
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1029/2018jc014059
Subject(s) - argo , oceanography , upwelling , geology , water mass , ocean gyre , climatology , environmental science , sea ice , subtropics , fishery , biology
Abstract Biogeochemical Argo floats, profiling to 2,000‐m depth, are being deployed throughout the Southern Ocean by the Southern Ocean Carbon and Climate Observations and Modeling program (SOCCOM). The goal is 200 floats by 2020, to provide the first full set of annual cycles of carbon, oxygen, nitrate, and optical properties across multiple oceanographic regimes. Building from no prior coverage to a sparse array, deployments are based on prior knowledge of water mass properties, mean frontal locations, mean circulation and eddy variability, winds, air‐sea heat/freshwater/carbon exchange, prior Argo trajectories, and float simulations in the Southern Ocean State Estimate and Hybrid Coordinate Ocean Model (HYCOM). Twelve floats deployed from the 2014–2015 Polarstern cruise from South Africa to Antarctica are used as a test case to evaluate the deployment strategy adopted for SOCCOM's 20 deployment cruises and 126 floats to date. After several years, these floats continue to represent the deployment zones targeted in advance: (1) Weddell Gyre sea ice zone, observing the Antarctic Slope Front, and a decadally‐rare polynya over Maud Rise; (2) Antarctic Circumpolar Current (ACC) including the topographically steered Southern Zone chimney where upwelling carbon/nutrient‐rich deep waters produce surprisingly large carbon dioxide outgassing; (3) Subantarctic and Subtropical zones between the ACC and Africa; and (4) Cape Basin. Argo floats and eddy‐resolving HYCOM simulations were the best predictors of individual SOCCOM float pathways, with uncertainty after 2 years of order 1,000 km in the sea ice zone and more than double that in and north of the ACC.