z-logo
open-access-imgOpen Access
Minimalist De Novo Design of an Artificial Enzyme
Author(s) -
Jahnu Saikia,
Venugopal T. Bhat,
Lokeswara Rao Potnuru,
Amay Sanjay Redkar,
Vipin Agarwal,
Vibin Ramakrishnan
Publication year - 2022
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c07075
Subject(s) - chemistry , histidine , coordination geometry , benzaldehyde , stereochemistry , tetrahedral molecular geometry , catalysis , crystallography , organic chemistry , enzyme , molecule , hydrogen bond , crystal structure
We employed a reductionist approach in designing the first heterochiral tripeptide that forms a robust heterogeneous short peptide catalyst similar to the "histidine brace" active site of lytic polysaccharide monooxygenases. The histidine brace is a conserved divalent copper ion-binding motif that comprises two histidine side chains and an amino group to create the T-shaped 3N geometry at the reaction center. The geometry parameters, including a large twist angle (73°) between the two imidazole rings of the model complex, are identical to those of native lytic polysaccharide monooxygenases (72.61°). The complex was synthesized and characterized as a structural and functional mimic of the histidine brace. UV-vis, vis-circular dichroism, Raman, and electron paramagnetic resonance spectroscopic analyses suggest a distorted square-pyramidal geometry with a 3N coordination at pH 7. Solution- and solid-state NMR results further confirm the 3N coordination in the copper center of the complex. The complex is pH-dependent and could catalyze the oxidation of benzyl alcohol in water to benzaldehyde with yields up to 82% in 3 h at pH 7 and above at 40 °C. The catalyst achieved 100% selectivity for benzaldehyde compared to conventional copper catalysis. The design of such a minimalist building block for functional soft materials with a pH switch can be a stepping stone in addressing needs for a cleaner and sustainable future catalyst.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here