
Research on the Influence of Combustion Methods on NOx Emissions from Co-combustion of Various Tannery Wastes
Author(s) -
Jiehan Zhang,
Yang Hu,
Guangyi Zhang,
GuoJun Kang,
Zhouen Liu,
Jian Yu,
Shiqiu Gao
Publication year - 2022
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c05640
Subject(s) - combustion , nox , nitrogen , waste management , environmental science , volume (thermodynamics) , environmental chemistry , materials science , pulp and paper industry , chemistry , environmental engineering , organic chemistry , physics , quantum mechanics , engineering
To further increase combustion efficiency and reduce nitrogen oxide pollution caused by tannery wastes, three raw materials, including tannery sludge, chrome-tanned buffing dust, and chrome shavings, were burned together in a dual-bed model reactor under various conditions. In addition, a thermogravimetric analysis of co-combustion of three tannery wastes was studied in this study, which was conducive to understanding the combustion characteristics and positive effects. The comprehensive combustibility index S , the flammability index K r , and the stable combustion characteristic index G b all increased when the tannery sludge was blended with chrome-tanned buffing dust and chrome shavings, indicating that the combustion behavior was improved by co-combustion. For normal combustion, decreasing the gas volume flow and temperature resulted in a decrease in the oxidation of nitrogen compounds, consequently lowering the NO x emission. During air staged combustion, at an appropriate secondary gas ratio of about 10-40%, the NO x reduction would be increased from 10.9 to 19.3%. By increasing the tertiary gas volume flow from 0.2 to 1.1 L/min in decoupling combustion, an average relative NO x reduction efficiency of 47% was attained compared with normal combustion. The results offered a viable technology that resulted in a lower NO x emission and realized the application of decoupling combustion.