z-logo
open-access-imgOpen Access
Efficient Entrapment of Carbonic Anhydrase in Alginate Hydrogels Using Liposomes for Continuous-Flow Catalytic Reactions
Author(s) -
Junshi Moriyama,
Makoto Yoshimoto
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c06299
Subject(s) - chemistry , entrapment , hydrolysis , calcium alginate , self healing hydrogels , chromatography , liposome , carbonic anhydrase , immobilized enzyme , sodium alginate , bead , chemical engineering , nuclear chemistry , polymer chemistry , enzyme , organic chemistry , sodium , biochemistry , calcium , materials science , medicine , surgery , engineering , composite material
A versatile approach to entrap relatively small enzymes in hydrogels allows their diverse biotechnological applications. In the present work, bovine carbonic anhydrase (BCA) was efficiently entrapped in calcium alginate beads with the help of liposomes. A mixture of sodium alginate (3 wt %) and carbonic anhydrase-liposome conjugates (BCALs) was dripped into a Tris-HCl buffer solution (pH = 7.5) containing 0.4 M CaCl 2 to induce the gelation and curing of the dispersed alginate-rich droplets. The entrapment efficiency of BCALs, which was defined as the amount of catalysts entrapped in alginate beads relative to that initially charged, was 98.7 ± 0.2% as determined through quantifying BCALs in the filtrate being separated from the beads. When free BCA was employed, on the other hand, a significantly lower entrapment efficiency of 27.2 ± 4.1% was obtained because free BCA could pass through alginate matrices. Because the volume of a cured alginate bead (10 μL) entrapped with BCALs was about 2.5 times smaller than that of an original droplet, BCALs were densely present in the beads to give the concentrations of lipids and BCA of 4.6-8.3 mM and 1.1-1.8 mg/mL, respectively. Alginate beads entrapped with BCALs were used to catalyze the hydrolysis of 1.0 mM p -nitrophenyl acetate ( p -NA) at pH = 7.5 using the wells of a microplate or 10 mL glass beakers as batch reactors. Furthermore, the beads were confined in a column for continuous-flow hydrolysis of 1.0 mM p -NA for 1 h at a mean residence time of 8.5 or 4.3 min. The results obtained demonstrate that the conjugation of BCA to liposomes gave an opportunity to achieve efficient and stable entrapment of BCA in alginate hydrogels for applying to catalytic reactions in bioreactors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here