Open Access
Thermomechanical Behavior of Methylene Diphenyl Diisocyanate-Bonded Flax/Glass Woven Fabric Reinforced Laminated Composites
Author(s) -
K. M. Faridul Hasan,
Péter György Horváth,
Tibor Alpár
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c04798
Subject(s) - composite material , materials science , thermogravimetric analysis , fourier transform infrared spectroscopy , composite number , ultimate tensile strength , absorption of water , flexural strength , glass fiber , silane , scanning electron microscope , thermal stability , chemical engineering , engineering
The development of sustainable and innovative products through solving the constantly raising demands of end users is one of the significant parts of research and development. Herein, the development of a green composite is reported with the reinforcement of naturally originated flax and artificial glass woven fabrics through incorporating with the methylene diphenyl diisocyanate (MDI) resin. The glass fabrics were treated with silane and flax fabrics by using NaOH before the composite production to increase the affinity of fibers toward the resin. Composite panels were developed with four different ratios of glass and flax woven fabric reinforcement (100/0, 83.33/16.67, 50/50, and 0/100) to investigate their performance with the MDI resin. The composites were characterized by tensile and flexural analysis to investigate the mechanical performances. The thermogravimetric characteristics of the composites were examined for checking the thermal stability of the produced composites. The surface morphology was investigated for observing the surfaces of the composites before and after applying tensile loads. Scanning electron microscopy (SEM) deployed EDX linear scanning was used for ensuring about the signals of different chemical constituents into the matrix. Fourier transform infrared spectroscopy (FTIR) was conducted for finding out the fingerprint of the chemical elements of the produced composites. Besides, the water absorption and moisture content tests were also conducted to examine the moisture absorption by the pure glass, flax, and hybrid composites. Further, statistical analysis of variances was performed to test the significance of the differences in the mechanical properties of the individual types of the composites developed. For investigating the relationship between the proportion of woven glass fabric in the reinforcement and the mechanical properties, regression analysis was used. The ANOVA test was also examined for checking the significance of the mechanical properties of the composites.