z-logo
open-access-imgOpen Access
Chemically Modified Bacterial Sacculi as a Vaccine Microparticle Scaffold
Author(s) -
Payton A. Weidenbacher,
Frances P. RodriguezRivera,
Mrinmoy Sanyal,
Joshua A. Visser,
Jonathan Do,
Carolyn R. Bertozzi,
Peter S. Kim
Publication year - 2022
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.2c00140
Subject(s) - microparticle , immunogenicity , conjugate , staphylococcus aureus , microbiology and biotechnology , chemistry , biophysics , immune system , biology , bacteria , immunology , mathematical analysis , genetics , mathematics , astrobiology
Vaccine scaffolds and carrier proteins increase the immunogenicity of subunit vaccines. Here, we developed, characterized, and demonstrated the efficacy of a novel microparticle vaccine scaffold comprised of bacterial peptidoglycan (PGN), isolated as an entire sacculi. The PGN microparticles contain bio-orthogonal chemical handles allowing for site-specific attachment of immunogens. We first evaluated the purification, integrity, and immunogenicity of PGN microparticles derived from a variety of bacterial species. We then optimized PGN microparticle modification conditions; Staphylococcus aureus PGN microparticles containing azido-d-alanine yielded robust conjugation to immunogens. We then demonstrated that this vaccine scaffold elicits comparable immunostimulation to the conventional carrier protein, keyhole limpet hemocyanin (KLH). We further modified the S. aureus PGN microparticle to contain the SARS-CoV-2 receptor-binding domain (RBD)─this conjugate vaccine elicited neutralizing antibody titers comparable to those elicited by the KLH-conjugated RBD. Collectively, these findings suggest that chemically modified bacterial PGN microparticles are a conjugatable and biodegradable microparticle scaffold capable of eliciting a robust immune response toward an antigen of interest.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here