z-logo
open-access-imgOpen Access
Differences in the Activity of Endogenous Bone Morphogenetic Protein Signaling Impact on the Ability of Induced Pluripotent Stem Cells to Differentiate to Corneal Epithelial‐Like Cells
Author(s) -
Kamarudin Taty Anna,
Bojic Sanja,
Collin Joseph,
Yu Min,
Alharthi Sameer,
Buck Harley,
Shortt Alex,
Armstrong Lyle,
Figueiredo Francisco C.,
Lako Majlinda
Publication year - 2018
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1002/stem.2750
Subject(s) - biology , stem cell , corneal epithelium , microbiology and biotechnology , induced pluripotent stem cell , cornea , embryonic stem cell , bone morphogenetic protein , progenitor cell , corneal diseases , cellular differentiation , bone morphogenetic protein 4 , immunology , biochemistry , neuroscience , gene
Cornea is a clear outermost layer of the eye which enables transmission of light onto the retina. The transparent corneal epithelium is regenerated by limbal stem cells (LSCs), whose loss/dysfunction results in LSCs deficiency (LSCD). Ex vivo expansion of autologous LSCs obtained from patient's healthy eye followed by transplantation onto the LSCs damaged/deficient eye, has provided a successful treatment for unilateral LSCD. However, this is not applicable to patient with total bilateral LSCD, where LSCs are lost/damaged from both eyes. We investigated the potential of human induced pluripotent stem cell (hiPSC) to differentiate into corneal epithelial‐like cells as a source of autologous stem cell treatment for patients with total bilateral LSCD. Our study showed that combined addition of bone morphogenetic protein 4 (BMP4), all trans‐retinoic acid and epidermal growth factor for the first 9 days of differentiation followed by cell‐replating on collagen‐IV‐coated surfaces with a corneal‐specific‐epithelial cell media for an additional 11 days, resulted in step wise differentiation of human embryonic stem cells (hESC) to corneal epithelial progenitors and mature corneal epithelial‐like cells. We observed differences in the ability of hiPSC lines to undergo differentiation to corneal epithelial‐like cells which were dependent on the level of endogenous BMP signaling and could be restored via the activation of this signaling pathway by a specific transforming growth factor β inhibitor (SB431542). Together our data reveal a differential ability of hiPSC lines to generate corneal epithelial cells which is underlined by the activity of endogenous BMP signaling pathway. S tem C ells 2018;36:337–348

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here