z-logo
open-access-imgOpen Access
Calpain Determines the Propensity of Adult Hippocampal Neural Stem Cells to Autophagic Cell Death Following Insulin Withdrawal
Author(s) -
Chung Kyung Min,
Park Hyunhee,
Jung Seonghee,
Ha Shinwon,
Yoo SeungJun,
Woo Hanwoong,
Lee Hyang Ju,
Kim Seong Who,
Kim EunKyoung,
Moon Cheil,
Yu SeongWoon
Publication year - 2015
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1002/stem.2082
Subject(s) - biology , calpain , autophagy , hippocampal formation , neural stem cell , microbiology and biotechnology , insulin , programmed cell death , stem cell , neuroscience , apoptosis , endocrinology , biochemistry , enzyme
A bstract Programmed cell death (PCD) has significant effects on the function of neural stem cells (NSCs) during brain development and degeneration. We have previously reported that adult rat hippocampal neural stem (HCN) cells underwent autophagic cell death (ACD) rather than apoptosis following insulin withdrawal despite their intact apoptotic capabilities. Here, we report a switch in the mode of cell death in HCN cells with calpain as a critical determinant. In HCN cells, calpain 1 expression was barely detectable while calpain 2 was predominant. Inhibition of calpain in insulin‐deprived HCN cells further augmented ACD. In contrast, expression of calpain 1 switched ACD to apoptosis. The proteasome inhibitor lactacystin blocked calpain 2 degradation and elevated the intracellular Ca 2+ concentration. In combination, these effects potentiated calpain activity and converted the mode of cell death to apoptosis. Our results indicate that low calpain activity, due to absence of calpain 1 and degradation of calpain 2, results in a preference for ACD over apoptosis in insulin‐deprived HCN cells. On the other hand, conditions leading to high calpain activity completely switch the mode of cell death to apoptosis. This is the first report on the PCD mode switching mechanism in NSCs. The dynamic change in calpain activity through the proteasome‐mediated modulation of the calpain and intracellular Ca 2+ levels may be the critical contributor to the demise of NSCs. Our findings provide a novel insight into the complex mechanisms interconnecting autophagy and apoptosis and their roles in the regulation of NSC death. S tem C ells 2015;33:3052—3064

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here