
Mesenchymal Stem Cells Pretreated with Delivered Hph‐1‐Hsp70 Protein Are Protected from Hypoxia‐Mediated Cell Death and Rescue Heart Functions from Myocardial Injury
Author(s) -
Chang Woochul,
Song ByeongWook,
Lim Soyeon,
Song Heesang,
Shim Chi Young,
Cha MinJi,
Ahn Dong Hyuck,
Jung YoungGook,
Lee DongHo,
Chung Ji Hyung,
Choi KiDoo,
Lee SeungKyou,
Chung Namsik,
Lee SangKyou,
Jang Yangsoo,
Hwang KiChul
Publication year - 2009
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1002/stem.153
Subject(s) - mesenchymal stem cell , transplantation , biology , in vivo , hsp70 , hypoxia (environmental) , cell therapy , pharmacology , stem cell therapy , stem cell , medicine , microbiology and biotechnology , heat shock protein , chemistry , biochemistry , organic chemistry , oxygen , gene
Mesenchymal stem cell (MSC) therapy for myocardial injury has inherent limitations due to the poor viability of MSCs after cell transplantation. In this study, we directly delivered Hsp70, a protein with protective functions against stress, into MSCs, using the Hph‐1 protein transduction domain ex vivo for high transfection efficiency and low cytotoxicity. Compared to control MSCs in in vitro hypoxic conditions, MSCs delivered with Hph‐1‐Hsp70 (Hph‐1‐Hsp70‐MSCs) displayed higher viability and anti‐apoptotic properties, including Bcl2 increase, reduction of Bax, JNK phosphorylation and caspase‐3 activity. Hsp70 delivery also attenuated cellular ATP‐depleting stress. Eight animals per group were used for in vivo experiments after occlusion of the left coronary artery. Transplantation of Hph‐1‐Hsp70‐MSCs led to a decrease in the fibrotic heart area, and significantly reduced the apoptotic positive index by 19.5 ± 2%, compared to no‐treatment controls. Hph‐1‐Hsp70‐MSCs were well‐integrated into the infarcted host myocardium. The mean microvessel count per field in the infarcted myocardium of the Hph‐1‐Hsp70‐MSC‐treated group (122.1 ± 13.5) increased relative to the MSC‐treated group (75.9 ± 10.4). By echocardiography, transplantation of Hph‐1‐Hsp70‐MSCs resulted in additional increases in heart function, compared to the MSCs‐transplanted group. Our results may help formulate better clinical strategies for in vivo MSC cell therapy for myocardial damage. STEM CELLS 2009;27:2283–2292