z-logo
open-access-imgOpen Access
Human Bone Marrow‐Derived Mesenchymal Stem Cells Suppress Human Glioma Growth Through Inhibition of Angiogenesis
Author(s) -
Ho Ivy A.W.,
Toh Han C,
Ng Wai H.,
Teo Yuan L.,
Guo Chang M.,
Hui Kam M.,
Lam Paula Y.P.
Publication year - 2013
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1002/stem.1247
Subject(s) - glioma , mesenchymal stem cell , biology , angiogenesis , cancer research , bone marrow , stem cell , progenitor cell , immunology , microbiology and biotechnology
Tumor tropism of human bone marrow‐derived mesenchymal stem cells (MSC) has been exploited for the delivery of therapeutic genes for anticancer therapy. However, the exact contribution of these cells in the tumor microenvironment remains unknown. In this study, we examined the biological effect of MSC on tumor cells. The results showed that MSC inhibited the growth of human glioma cell lines and patient‐derived primary glioma cells in vitro. Coadministration of MSC and glioma cells resulted in significant reduction in tumor volume and vascular density, which was not observed when glioma was injected with immortalized normal human astrocytes. Using endothelial progenitor cells (EPC) from healthy donors and HUVEC endothelial cells, the extent of EPC recruitment and capacity to form endothelial tubes was significantly impaired in conditioned media derived from MSC/glioma coculture, suggesting that MSC suppressed tumor angiogenesis through the release of antiangiogenic factors. Further studies using antibody array showed reduced expression of platelet‐derived growth factor (PDGF)‐BB and interleukin (IL)‐1β in MSC/glioma coculture when compared with controls. In MSC/glioma coculture, PDGF‐BB mRNA and the corresponding proteins (soluble and membrane bound forms) as well as the receptors were found to be significantly downregulated when compared with that of glioma cocultured with normal human astrocytes or glioma monoculture. Furthermore, IL‐1β, phosphorylated Akt, and cathepsin B proteins were also reduced in MSC/glioma. Taken together, these data indicated that the antitumor effect of MSC may be mediated through downregulation of PDGF/PDGFR axis, which is known to play a key role in glioma angiogenesis. S TEM C ells 2013;31:146–155

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here