
Enhancement of β‐Globin Gene Expression in Thalassemic IVS2‐654 Induced Pluripotent Stem Cell‐Derived Erythroid Cells by Modified U7 snRNA
Author(s) -
Phanthong Phetcharat,
Borwornpinyo Suparerk,
Kitiyanant Narisorn,
Jearawiriyapaisarn Natee,
Nuntakarn Lalana,
Saetan Jirawat,
Nualkaew Tiwaporn,
Sangiamsuntorn Khanit,
Anurathapan Usanarat,
Dinnyes Andras,
Kitiyanant Yindee,
Hongeng Suradej
Publication year - 2017
Publication title -
stem cells translational medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.781
H-Index - 71
eISSN - 2157-6580
pISSN - 2157-6564
DOI - 10.1002/sctm.16-0121
Subject(s) - induced pluripotent stem cell , small nuclear rna , biology , stem cell , rna splicing , small hairpin rna , microbiology and biotechnology , globin , embryonic stem cell , genetics , gene , gene expression , rna , non coding rna
The therapeutic use of patient‐specific induced pluripotent stem cells (iPSCs) is emerging as a potential treatment of β‐thalassemia. Ideally, patient‐specific iPSCs would be genetically corrected by various approaches to treat β‐thalassemia including lentiviral gene transfer, lentivirus‐delivered shRNA, and gene editing. These corrected iPSCs would be subsequently differentiated into hematopoietic stem cells and transplanted back into the same patient. In this article, we present a proof of principle study for disease modeling and screening using iPSCs to test the potential use of the modified U7 small nuclear (sn) RNA to correct a splice defect in IVS2‐654 β‐thalassemia. In this case, the aberration results from a mutation in the human β‐globin intron 2 causing an aberrant splicing of β‐globin pre‐mRNA and preventing synthesis of functional β‐globin protein. The iPSCs (derived from mesenchymal stromal cells from a patient with IVS2‐654 β‐thalassemia/hemoglobin (Hb) E) were transduced with a lentivirus carrying a modified U7 snRNA targeting an IVS2‐654 β‐globin pre‐mRNA in order to restore the correct splicing. Erythroblasts differentiated from the transduced iPSCs expressed high level of correctly spliced β‐globin mRNA suggesting that the modified U7 snRNA was expressed and mediated splicing correction of IVS2‐654 β‐globin pre‐mRNA in these cells. Moreover, a less active apoptosis cascade process was observed in the corrected cells at transcription level. This study demonstrated the potential use of a genetically modified U7 snRNA with patient‐specific iPSCs for the partial restoration of the aberrant splicing process of β‐thalassemia. S tem C ells T ranslational M edicine 2017;6:1059–1069