Premium
Blinded continuous monitoring in clinical trials with recurrent event endpoints
Author(s) -
Friede Tim,
Häring Dieter A.,
Schmidli Heinz
Publication year - 2018
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.1907
Subject(s) - sample size determination , type i and type ii errors , statistics , overdispersion , negative binomial distribution , clinical trial , event (particle physics) , variance (accounting) , rare events , statistical power , randomized controlled trial , medicine , early stopping , binomial distribution , econometrics , mathematics , computer science , poisson distribution , surgery , artificial intelligence , physics , accounting , quantum mechanics , artificial neural network , business
In studies with recurrent event endpoints, misspecified assumptions of event rates or dispersion can lead to underpowered trials or overexposure of patients. Specification of overdispersion is often a particular problem as it is usually not reported in clinical trial publications. Changing event rates over the years have been described for some diseases, adding to the uncertainty in planning. To mitigate the risks of inadequate sample sizes, internal pilot study designs have been proposed with a preference for blinded sample size reestimation procedures, as they generally do not affect the type I error rate and maintain trial integrity. Blinded sample size reestimation procedures are available for trials with recurrent events as endpoints. However, the variance in the reestimated sample size can be considerable in particular with early sample size reviews. Motivated by a randomized controlled trial in paediatric multiple sclerosis, a rare neurological condition in children, we apply the concept of blinded continuous monitoring of information, which is known to reduce the variance in the resulting sample size. Assuming negative binomial distributions for the counts of recurrent relapses, we derive information criteria and propose blinded continuous monitoring procedures. The operating characteristics of these are assessed in Monte Carlo trial simulations demonstrating favourable properties with regard to type I error rate, power, and stopping time, ie, sample size.