z-logo
open-access-imgOpen Access
Model‐based evaluation of image‐guided fractionated whole‐brain radiation therapy in pediatric diffuse intrinsic pontine glioma xenografts
Author(s) -
Husband Hillary R.,
Campagne Olivia,
He Chen,
Zhu Xiaoyan,
Bianski Brandon M.,
Baker Suzanne J.,
Shelat Anang A.,
Tinkle Christopher L.,
Stewart Clinton F.
Publication year - 2021
Publication title -
cpt: pharmacometrics and systems pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.53
H-Index - 37
ISSN - 2163-8306
DOI - 10.1002/psp4.12627
Subject(s) - medicine , radiation therapy , glioma , nuclear medicine , pathology , cancer research , oncology
Radiation therapy (RT) is currently the standard treatment for diffuse intrinsic pontine glioma (DIPG), the most common cause of death in children with brain cancer. A pharmacodynamic model was developed to describe the radiation‐induced tumor shrinkage and overall survival in mice bearing DIPG. CD1‐nude mice were implanted in the brain cortex with luciferase‐labeled patient‐derived orthotopic xenografts of DIPG (SJDIPGx7 H3F3A WT / K27 M and SJDIPGx37  H3F3A K27M / K27M ). Mice were treated with image‐guided whole‐brain RT at 1 or 2 Gy/fraction 5‐days‐on 2‐days‐off for a cumulative dose of 20 or 54 Gy. Tumor progression was monitored with bioluminescent imaging (BLI). A mathematical model describing BLI and overall survival was developed with data from mice receiving 2 Gy/fraction and validated using data from mice receiving 1 Gy/fraction. BLI data were adequately fitted with a logistic tumor growth function and a signal distribution model with linear radiation‐induced killing effect. A higher tumor growth rate in SJDIPGx37 versus SJDIPGx7 xenografts and a killing effect decreasing with higher tumor baseline ( p  < 0.0001) were identified. Cumulative radiation dose was suggested to inhibit the tumor growth rate according to a Hill function. Survival distribution was best described with a Weibull hazard function in which the hazard baseline was a continuous function of tumor BLI. Significant differences were further identified between DIPG cell lines and untreated versus treated mice. The model was adequately validated with mice receiving 1 Gy/fraction and will be useful in guiding future preclinical trials incorporating radiation and to support systemic combination therapies with RT.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here