z-logo
Premium
Establishing upper limits on neuronal activity–evoked pH changes with APT‐CEST MRI at 7 T
Author(s) -
Khlebnikov Vitaliy,
Siero Jeroen C.W.,
Bhogal Alex A.,
Luijten Peter R.,
Klomp Dennis W.J.,
Hoogduin Hans
Publication year - 2018
Publication title -
magnetic resonance in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.696
H-Index - 225
eISSN - 1522-2594
pISSN - 0740-3194
DOI - 10.1002/mrm.27013
Subject(s) - nuclear magnetic resonance , bloch equations , visual cortex , chemistry , magnetic resonance imaging , cerebral blood flow , functional magnetic resonance spectroscopy of the brain , functional magnetic resonance imaging , premovement neuronal activity , neuroscience , psychology , medicine , cardiology , physics , radiology
Purpose To detect neuronal activity–evoked pH changes by amide proton transfer–chemical exchange saturation transfer (APT‐CEST) MRI at 7 T. Methods Three healthy subjects participated in the study. A low‐power 3‐dimensional APT‐CEST sequence was optimized through the Bloch‐McConnell equations. pH sensitivity of the sequence was estimated both in phantoms and in vivo. The feasibility of pH–functional MRI was tested in Bloch‐McConnell‐simulated data using the optimized sequence. In healthy subjects, the visual stimuli were used to evoke transient pH changes in the visual cortex, and a 3‐dimensional APT‐CEST volume was acquired at the pH‐sensitive frequency offset of 3.5 ppm every 12.6 s. Results In theory, a three‐component general linear model was capable of separating the effects of blood oxygenation level–dependent contrast and pH. The Bloch‐McConnell equations indicated that a change in pH of 0.03 should be measurable at the experimentally determined temporal signal‐to‐noise ratio of 108. However, only a blood oxygenation level–dependent effect in the visual cortex could be discerned during the visual stimuli experiments performed in the healthy subjects. Conclusions The results of this study suggest that if indeed there are any transient brain pH changes in response to visual stimuli, those are under 0.03 units pH change, which is extremely difficult to detect using the existent techniques. Magn Reson Med 80:126–136, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here