Premium
How well do embryo development rate models derived from laboratory data predict embryo development in sea turtle nests?
Author(s) -
Booth David T.,
Turner Alysabeth G.,
Laloë Jacques‑Olivier,
Limpus Colin J.
Publication year - 2022
Publication title -
journal of experimental zoology part a: ecological and integrative physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.834
H-Index - 11
eISSN - 2471-5646
pISSN - 2471-5638
DOI - 10.1002/jez.2585
Subject(s) - incubation , incubation period , hatching , turtle (robot) , ectotherm , biology , in situ , nest (protein structural motif) , embryogenesis , ecology , embryo , fishery , chemistry , biochemistry , organic chemistry
Development rate of ectothermic animals varies with temperature. Here we use data derived from laboratory constant temperature incubation experiments to formulate development rate models that can be used to model embryonic development rate in sea turtle nests. We then use a novel method for detecting the time of hatching to measure the in situ incubation period of sea turtle clutches to test the accuracy of our models in predicting the incubation period from nest temperature traces. We found that all our models overestimated the incubation period. We hypothesize three possible explanations which are not mutually exclusive for the mismatch between our modeling and empirically measured in situ incubation period: (1) a difference in the way the incubation period is calculated in laboratory data and in our field nests, (2) inaccuracies in the assumptions made by our models at high incubation temperatures where there is no empirical laboratory data, and (3) a tendency for development rate in laboratory experiments to be progressively slower as temperature decreases compared with in situ incubation.