z-logo
open-access-imgOpen Access
Cancer cachexia impairs neural respiratory drive in hypoxia but not hypercapnia
Author(s) -
Fields Daryl P.,
Roberts Brandon M.,
Simon Alec K.,
Judge Andrew R.,
Fuller David D.,
Mitchell Gordon S.
Publication year - 2019
Publication title -
journal of cachexia, sarcopenia and muscle
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.803
H-Index - 66
eISSN - 2190-6009
pISSN - 2190-5991
DOI - 10.1002/jcsm.12348
Subject(s) - hypercapnia , normocapnia , medicine , respiratory system , hypoxia (environmental) , tidal volume , anesthesia , chemistry , oxygen , organic chemistry
Background Cancer cachexia is an insidious process characterized by muscle atrophy with associated motor deficits, including diaphragm weakness and respiratory insufficiency. Although neuropathology contributes to muscle wasting and motor deficits in many clinical disorders, neural involvement in cachexia‐linked respiratory insufficiency has not been explored. Methods We first used whole‐body plethysmography to assess ventilatory responses to hypoxic and hypercapnic chemoreflex activation in mice inoculated with the C26 colon adenocarcinoma cell line. Mice were exposed to a sequence of inspired gas mixtures consisting of (i) air, (ii) hypoxia (11% O 2 ) with normocapnia, (iii) hypercapnia (7% CO 2 ) with normoxia, and (iv) combined hypercapnia with hypoxia (i.e. maximal chemoreflex response). We also tested the respiratory neural network directly by recording inspiratory burst output from ligated phrenic nerves, thereby bypassing influences from changes in diaphragm muscle strength, respiratory mechanics, or compensation through recruitment of accessory motor pools. Results Cachectic mice demonstrated a significant attenuation of the hypoxic tidal volume (0.26mL±0.01mL vs 0.30mL±0.01mL; p<0.05), breathing frequency (317±10bpm vs 344±6bpm; p<0.05) and phrenic nerve (29.5±2.6% vs 78.8±11.8%; p<0.05) responses. On the other hand, the much larger hypercapnic tidal volume (0.46±0.01mL vs 0.46±0.01mL; p>0.05), breathing frequency (392±5bpm vs 408±5bpm; p>0.05) and phrenic nerve (93.1±8.8% vs 111.1±13.2%; p>0.05) responses were not affected. Further, the concurrent hypercapnia/hypoxia tidal volume (0.45±0.01mL vs 0.45±0.01mL; p>0.05), breathing frequency (395±7bpm vs 400±3bpm; p>0.05), and phrenic nerve (106.8±7.1% vs 147.5±38.8%; p>0.05) responses were not different between C26 cachectic and control mice. Conclusions Breathing deficits associated with cancer cachexia are specific to the hypoxic ventilatory response and, thus, reflect disruptions in the hypoxic chemoafferent neural network. Diagnostic techniques that detect decompensation and therapeutic approaches that support the failing hypoxic respiratory response may benefit patients at risk for cancer cachectic‐associated respiratory failure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here