z-logo
Premium
Detection and Characterization of the Effect of AB‐FUBINACA and Its Metabolites in a Rat Model
Author(s) -
HsinHung Chen Michael,
Dip Aybike,
Ahmed Mostafa,
Tan Michael L.,
Walterscheid Jeffrey P.,
Sun Hua,
Teng BaBie,
Mozayani Ashraf
Publication year - 2016
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.25421
Subject(s) - chemistry , characterization (materials science) , nanotechnology , materials science
Synthetic cannabinoids were originally developed by academic and pharmaceutical laboratories with the hope of providing therapeutic relief from the pain of inflammatory and degenerative diseases. However, recreational drug enthusiasts have flushed the market with new strains of these potent drugs that evade detection yet endanger public health and safety. Although many of these drug derivatives were published in the medical literature, others were merely patented without further characterization. AB‐FUBINACA is an example of one of the new indazole‐carboxamide synthetic cannabinoids introduced in the past year. Even though AB‐FUBINACA has become increasingly prominent in forensic drug and toxicology specimens analyses, little is known about the pharmacology of this substance. To study its metabolic fate, we utilized Wistar rats to study the oxidative products of AB‐FUBINACA in urine and its effect on gene expressions in liver and heart. Rats were injected with 5 mg/kg of AB‐FUBINACA each day for 5 days. Urine samples were collected every day at the same time. On day 5 after treatment, we collected the organs such as liver and heart. The urine samples were analyzed by mass spectrometry, which revealed several putative metabolites and positioning of the hydroxyl addition on the molecule. We used quantitative PCR gene expression array to analyze the hepatotoxicity and cardiotoxicity on these rats and confirmed by real‐time quantitative RT‐PCR. We identified three genes significantly associated with dysfunction of oxidation and inflammation. Our study reports in vivo metabolites of AB‐FUBINACA in urine and its effect on the gene expressions in liver and heart. J. Cell. Biochem. 117: 1033–1043, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals. Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here