z-logo
Premium
In vitro and in vivo degradation of microfiber bioresorbable coronary scaffold
Author(s) -
Huang ChiHung,
Lee ShengYang,
Horng Sonida,
Guy LouisGeorges,
Yu TingBin
Publication year - 2018
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.33987
Subject(s) - in vivo , microfiber , biomedical engineering , degradation (telecommunications) , materials science , in vitro , chemistry , composite material , medicine , telecommunications , biochemistry , microbiology and biotechnology , computer science , biology
The degradation of Mirage Bioresorbable Microfiber Scaffold was evaluated in vitro and in vivo . The degradation in polymer molecular weight (MW), strut morphology, and integrity was accessed using gel permeation chromatography (GPC), X‐ray micro‐computed tomography (micro‐CT) evaluation. To simulate the physiological degradation in vitro , scaffolds were deployed in silicone mock vessels connected to a peristaltic pumping system, which pumps 37°C phosphate‐buffered saline (PBS, pH 7.4) at a constant rate. At various time points ( 30D, 60D, 90D, 180D, 270D, and 360D ), the MW of microfibers decreased to 57.3, 49.8, 36.9, 13.9, 6.4, and 5.1% against the baseline. The in vivo degradation study was performed by implanting scaffolds in internal thoracic arteries (ITAs) of mini‐swine. At the scheduled sacrifice time points (30D, 90D, 180D, 270D, 360D, and 540D), the implanted ITAs were excised for GPC analysis; the MW of the implanted scaffolds dropped to 58.5, 34.7, 24.8, 16.1, 12.9, and 7.1, respectively. Mass loss of scaffolds reached 72.4% at 540D of implantation. Two stages of hydrolysis were observed in in vitro and in vivo degradation kinetics, and the statistical analysis suggested a positive correlation between in vivo and in vitro degradation. After 6 months of incubation in animals, significant strut degradation was seen in the micro‐CT evaluation in all sections as strut fragments and separations. The micro‐CT results further confirmed that every sample at 720D had X‐ray transmission similar to surrounding tissue, thereby indicating full degradation within 2 years. © 2017 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1842–1850, 2018.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here