z-logo
Premium
The effect of Mg–Ca–Sr alloy degradation products on human mesenchymal stem cells
Author(s) -
Berglund Ida S.,
Dirr Elliott W.,
Ramaswamy Vidhya,
Allen Josephine B.,
Allen Kyle D.,
Manuel Michele V.
Publication year - 2018
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.33869
Subject(s) - mesenchymal stem cell , degradation (telecommunications) , alloy , chemistry , stem cell , strontium , microbiology and biotechnology , materials science , metallurgy , computer science , biology , telecommunications , organic chemistry
Biodegradable Mg alloys have the potential to replace currently used metallic medical implant devices, likely eliminating toxicity concerns and the need for secondary surgeries, while also providing a potentially stimulating environment for tissue growth. A recently developed Mg–Ca–Sr alloy possesses advantageous characteristics over other Mg alloys, having a good combination of strength and degradation behavior, while also displaying potentially osteogenic properties. To better understand the effect of alloy degradation products on cellular mechanisms, in vitro studies using human bone marrow‐derived mesenchymal stem cells were conducted. Ionic products of alloy dissolution were found to be nontoxic but changed the proliferation profile of stem cells. Furthermore, their presence changed the progress of osteogenic development, while concentrations of Mg in particular appeared to induce stem cell differentiation. The work presented herein provides a foundation for future alloy design where structures can be tailored to obtain specific implant performance. These potentially bioactive implants would reduce the risks for patients by shortening their healing time, minimizing discomfort and toxicity concerns, while reducing hospital costs. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 697–704, 2018.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here