
Do intrinsic brain functional networks predict working memory from childhood to adulthood?
Author(s) -
Zhang Han,
Hao Shuji,
Lee Annie,
Eickhoff Simon B.,
Pecheva Diliana,
Cai Shirong,
Meaney Michael,
Chong YapSeng,
Broekman Birit F. P.,
Fortier Marielle V.,
Qiu Anqi
Publication year - 2020
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.25143
Subject(s) - working memory , psychology , connectome , functional integration , neuroscience , functional connectivity , resting state fmri , functional magnetic resonance imaging , cognition , cognitive psychology , developmental psychology , mathematical analysis , mathematics , integral equation
Working memory (WM) is defined as the ability to maintain a representation online to guide goal‐directed behavior. Its capacity in early childhood predicts academic achievements in late childhood and its deficits are found in various neurodevelopmental disorders. We employed resting‐state fMRI (rs‐fMRI) of 468 participants aged from 4 to 55 years and connectome‐based predictive modeling (CPM) to explore the potential predictive power of intrinsic functional networks to WM in preschoolers, early and late school‐age children, adolescents, and adults. We defined intrinsic functional networks among brain regions identified by activation likelihood estimation (ALE) meta‐analysis on existing WM functional studies (ALE‐based intrinsic functional networks) and intrinsic functional networks generated based on the whole brain (whole‐brain intrinsic functional networks). We employed the CPM on these networks to predict WM in each age group. The CPM using the ALE‐based and whole‐brain intrinsic functional networks predicted WM of individual adults, while the prediction power of the ALE‐based intrinsic functional networks was superior to that of the whole‐brain intrinsic functional networks. Nevertheless, the CPM using the whole‐brain but not the ALE‐based intrinsic functional networks predicted WM in adolescents. And, the CPM using neither the ALE‐based nor whole‐brain networks predicted WM in any of the children groups. Our findings showed the trend of the prediction power of the intrinsic functional networks to cognition in individuals from early childhood to adulthood.