
Passive perceptual learning modulates motor inhibitory control in superior frontal regions
Author(s) -
Friedrich Julia,
Beste Christian
Publication year - 2020
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24835
Subject(s) - psychology , perceptual learning , neuroscience , perception , sensory system , stimulus (psychology) , neurophysiology , inferior frontal gyrus , electroencephalography , cognition , motor learning , cognitive psychology
Response inhibition is of vital importance in the context of controlling inappropriate responses. The role of perceptual processes during inhibitory control has attracted increased interest. Yet, we are far from an understanding of the mechanisms. One candidate mechanism by which perceptual processes may affect response inhibition refers to “gain control” that is closely linked to the signal‐to‐noise ratio of incoming information. A means to modulate the signal‐to‐noise ratio and gain control mechanisms is perceptual learning. In the current study, we examine the impact of perceptual learning (i.e., passive repetitive sensory stimulation) on response inhibition combining EEG signal decomposition with source localization analyses. A tactile GO/NOGO paradigm was conducted to measure action restraint as one subcomponent of response inhibition. We show that passive perceptual learning modulates response inhibition processes. In particular, perceptual learning attenuates the detrimental effect of response automation during inhibitory control. Temporally decomposed EEG data show that stimulus‐related and not response selection processes during conflict monitoring are linked to these effects. The superior and middle frontal gyrus (BA6), as well as the motor cortex (BA4), are associated with the effects of perceptual learning on response inhibition. Reliable neurophysiological effects were not evident on the basis of standard ERPs, which has important methodological implications for perceptual learning research. The results detail how lower level sensory plasticity protocols affect higher‐order cognitive control functions in frontal cortical structures.