z-logo
open-access-imgOpen Access
Prognostic utility of diastolic dysfunction and speckle tracking echocardiography in heart failure with reduced ejection fraction
Author(s) -
Hansen Sune,
Brainin Philip,
Sengeløv Morten,
Jørgensen Peter Godsk,
Bruun Niels Eske,
Olsen Flemming Javier,
FritzHansen Thomas,
Schou Morten,
Gislason Gunnar,
BieringSørensen Tor
Publication year - 2020
Publication title -
esc heart failure
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.787
H-Index - 25
ISSN - 2055-5822
DOI - 10.1002/ehf2.12532
Subject(s) - ejection fraction , medicine , hazard ratio , cardiology , heart failure , confidence interval , grading (engineering) , diastolic heart failure , diastole , algorithm , blood pressure , civil engineering , computer science , engineering
Aims We hypothesized that grading of diastolic dysfunction (DDF) according to two DDF grading algorithms and strain imaging yields prognostic information on all‐cause mortality in patients with heart failure with reduced ejection fraction (HFrEF). Methods and results We enrolled ambulatory HFrEF (left ventricular ejection fraction < 45%; N = 1 065) patients who underwent echocardiography and speckle tracking assessment of global longitudinal strain (GLS). Patients were stratified according to DDF grades (Grades I–III) according to two contemporary DDF grading algorithms. Prognostic performance was assessed by C‐statistics. Of the originally 1 065 enrolled patients, a total of 645 (61%) patients (age: 67 ± 11 years, male: 72%, ejection fraction: 27 ± 9%) were classified according to both DDF grading algorithms. Concordance between the algorithms was moderate (kappa = 0.48) and the reclassification rate was 33%. During a median follow‐up of 3.3 years (1.9, 4.7 years), 101 (16%) died from all causes. When comparing DDF Grade I vs. Grade III, both algorithms provided prognostic information [Nagueh: (hazard ratio) HR 2.09, 95% confidence interval (CI),1.32–3.31, P = 0.002; Johansen: HR 2.47, 95% CI, 1.57–3.87, P < 0.001]. However, when comparing DDF Grade II vs. Grade III, only the Johansen algorithm yielded prognostic information (Nagueh: HR 1.04, 95% CI, 0.60–1.77, P = 0.90; Johansen: HR 2.26, 95% CI, 1.35–3.77, P = 0.002). We found no difference in prognostic performance between the two algorithms (C‐statistics: 0.604 vs. 0.623, P = 0.24). Assessed by C‐statistics, the most powerful predictors of the endpoint from the two algorithms were E/e'‐ratio (C‐statistics: 0.644), tricuspid regurgitation velocity (C‐statistics: 0.625) and E/A‐ratio (C‐statistics: 0.602). When adding GLS to a combination of these predictors, the prognostic performance increased significantly (C‐statistics: 0.705 vs. C‐statistics: 0.634, P = 0.028). Conclusions Evaluation of DDF in patients with HFrEF yields prognostic information on all‐cause mortality. Furthermore, adding GLS to contemporary algorithms of DDF adds novel prognostic information.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here