Premium
Xenopus TACC1 is a microtubule plus‐end tracking protein that can regulate microtubule dynamics during embryonic development
Author(s) -
Lucaj Christopher M.,
Evans Matthew F.,
Nwagbara Belinda U.,
Ebbert Patrick T.,
Baker Charlie C.,
Volk Joseph G.,
Francl Andrew F.,
Ruvolo Sean P.,
Lowery Laura Anne
Publication year - 2015
Publication title -
cytoskeleton
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.95
H-Index - 86
eISSN - 1949-3592
pISSN - 1949-3584
DOI - 10.1002/cm.21224
Subject(s) - xenopus , biology , microtubule , african clawed frog , microbiology and biotechnology , genetics , gene
Microtubule plus‐end dynamics are regulated by a family of proteins called plus‐end tracking proteins (+TIPs). We recently demonstrated that the transforming acidic coiled‐coil (TACC) domain family member, TACC3, can function as a +TIP to regulate microtubule dynamics in Xenopus laevis embryonic cells. Although it has been previously reported that TACC3 is the only TACC family member that exists in Xenopus , our examination of its genome determined that Xenopus , like all other vertebrates, contains three TACC family members. Here, we investigate the localization and function of Xenopus TACC1, the founding member of the TACC family. We demonstrate that it can act as a +TIP to regulate microtubule dynamics, and that the conserved C‐terminal TACC domain is required for its localization to plus‐ends. We also show that, in Xenopus embryonic mesenchymal cells, TACC1 and TACC3 are each required for maintaining normal microtubule growth speed but exhibit some functional redundancy in the regulation of microtubule growth lifetime. Given the conservation of TACC1 in Xenopus and other vertebrates, we propose that Xenopus laevis is a useful system to investigate unexplored cell biological functions of TACC1 and other TACC family members in the regulation of microtubule dynamics. © 2015 The Authors. Cytoskeleton, Published by Wiley Periodicals, Inc.