z-logo
Premium
Chromatographic parameter determination for complex biological feedstocks
Author(s) -
Pirrung Silvia M.,
Parruca da Cruz Diogo,
Hanke Alexander T.,
Berends Carmen,
Van Beckhoven Ruud F.W.C.,
Eppink Michel H.M.,
Ottens Marcel
Publication year - 2018
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.2642
Subject(s) - chromatography , chemistry
The application of mechanistic models for chromatography requires accurate model parameters. Especially for complex feedstocks such as a clarified cell harvest, this can still be an obstacle limiting the use of mechanistic models. Another commonly encountered obstacle is a limited amount of sample material and time to determine all needed parameters. Therefore, this study aimed at implementing an approach on a robotic liquid handling system that starts directly with a complex feedstock containing a monoclonal antibody. The approach was tested by comparing independent experimental data sets with predictions generated by the mechanistic model using all parameters determined in this study. An excellent agreement between prediction and experimental data was found verifying the approach. Thus, it can be concluded that RoboColumns with a bed volume of 200 μL can well be used to determine isotherm parameters for predictions of larger scale columns. Overall, this approach offers a new way to determine crucial model input parameters for mechanistic modelling of chromatography for complex biological feedstocks. © 2018 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog. , 34:1006–1018, 2018

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here