Premium
Antifouling activity of enzyme‐functionalized silica nanobeads
Author(s) -
Zai Michele,
Habimana Olivier,
Amadio Jessica,
Casey Eoin
Publication year - 2016
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.25835
Subject(s) - biofouling , biofilm , biocide , surface modification , pseudomonas fluorescens , chemistry , nanotechnology , materials science , chemical engineering , organic chemistry , bacteria , biochemistry , biology , engineering , membrane , genetics
ABSTRACT The amelioration of biofouling in industrial processing equipment is critical for performance and reliability. While conventional biocides are effective in biofouling control, they are potentially hazardous to the environment and in some cases corrosive to materials. Enzymatic approaches have been shown to be effective and can overcome the disadvantages of traditional biocides, however they are typically uneconomic for routine biofouling control. The aim of this study was to design a robust and reusable enzyme‐functionalized nano‐bead system having biofilm dispersion properties. This work describes the biochemical covalent functionalization of silica‐based nanobeads (hereafter referred to as Si‐NanoB) with Proteinase K (PK). Results showed that PK‐functionalized Si‐NanoB are effective in dispersing both protein‐based model biofilms and structurally altering Pseudomonas fluorescens biofilms, with significant decreases in surface coverage and thickness of 30.1% and 38.85%, respectively, while increasing surface roughness by 19 % following 24 h treatments on bacterial biofilms. This study shows that enzyme‐functionalized nanobeads may potentially be an environmentally friendly and cost effective alternative to pure enzyme and chemical treatments. Biotechnol. Bioeng. 2016;113: 501–512. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.