z-logo
Premium
En Route Towards the Control of Luminescent, Optically‐Active 3D Architectures
Author(s) -
Hindenberg Philip,
Rominger Frank,
RomeroNieto Carlos
Publication year - 2021
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202011368
Subject(s) - intermolecular force , molecule , supramolecular chemistry , luminescence , rendering (computer graphics) , nanotechnology , organic molecules , planar , chemistry , materials science , chemical physics , organic chemistry , optoelectronics , computer science , computer graphics (images)
Abstract π‐Extended systems are key components for the development of future organic electronic technologies. While conceiving molecules with improved properties is fundamental for the evolution of materials science, keeping control over the 3D arrangement of molecules represents an ever‐expanding challenge. Herein, a synthetic protocol to replace carbon atoms of π‐systems by dissymmetric phosphorus atoms is reported; in particular, it allowed for conceiving new fused phosphapyrene derivatives with improved properties. The presence of dissymmetric phosphorus atoms precluded the formation of excimers. X‐ray diffraction revealed that, meanwhile, strong intermolecular interactions are taking place in the solid state. The phosphapyrenes photoluminesce in the visible region with high quantum yields; importantly, they are CD‐active. In addition, the unique non‐planar features of phosphorus atoms allowed for the control of the 3D arrangement of molecules, rendering lemniscate‐like structures. Based on our discoveries, we envisage the possibility to construct higher‐order, chiral 3D architectures from larger phosphorus‐containing π‐systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here