Premium
Hybrid Plasmonic–Aerogel Materials as Optical Superheaters with Engineered Resonances
Author(s) -
Klemmed Benjamin,
Besteiro Lucas V.,
Benad Albrecht,
Georgi Maximilian,
Wang Zhiming,
Govorov Alexander,
Eychmüller Alexander
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201913022
Subject(s) - aerogel , plasmon , materials science , thermal insulation , optoelectronics , nanotechnology , layer (electronics)
Solar radiation is a versatile source of energy, convertible to different forms of power. A direct path to exploit it is the generation of heat, for applications including passive building heating, but it can also drive secondary energy‐conversion steps. We present a novel concept for a hybrid material which is both strongly photo‐absorbing and with superior characteristics for the insulation of heat. The combination of that two properties is rather unique, and make this material an optical superheater. To realize such a material, we are combining plasmonic nanoheaters with alumina aerogel. The aerogel has the double function of providing structural support for plasmonic nanocrystals, which serve as nanoheaters, and reducing the diffusion rate of the heat generated by them, resulting in large local temperature increases under a relatively low radiation intensity. This work includes theoretical discussion on the physical mechanisms impacting the system's balanced thermal equilibrium.