Premium
Protein Patterns and Oscillations on Lipid Monolayers and in Microdroplets
Author(s) -
Zieske Katja,
Chwastek Grzegorz,
Schwille Petra
Publication year - 2016
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201606069
Subject(s) - ftsz , biophysics , membrane , monolayer , lipid bilayer , chemistry , cell division , membrane protein , microbiology and biotechnology , compartment (ship) , cell , biology , biochemistry , oceanography , geology
Abstract The Min proteins from E.coli position the bacterial cell‐division machinery through pole‐to‐pole oscillations. In vitro, Min protein self‐organization can be reconstituted in the presence of a lipid membrane as a catalytic surface. However, Min dynamics have so far not been reconstituted in fully membrane‐enclosed volumes. Microdroplets interfaced by lipid monolayers were employed as a simple 3D mimic of cellular compartments to reconstitute Min protein oscillations. We demonstrate that lipid monolayers are sufficient to fulfil the catalytic role of the membrane and thus represent a facile platform to investigate Min protein regulated dynamics of the cell‐division protein FtsZ‐mts. In particular, we show that droplet containers reveal distinct Min oscillation modes, and reveal a dependence of FtsZ‐mts structures on compartment size. Finally, co‐reconstitution of Min proteins and FtsZ‐mts in droplets yields antagonistic localization, thus demonstrating that droplets indeed support the analysis of complex bacterial self‐organization in confined volumes.