Premium
Early electroencephalography for outcome prediction of postanoxic coma: A prospective cohort study
Author(s) -
Ruijter Barry J.,
TjepkemaCloostermans Marleen C.,
Tromp Selma C.,
van den Bergh Walter M.,
Foudraine Norbert A.,
Kornips Francois H. M.,
Drost Gea,
Scholten Erik,
Bosch Frank H.,
Beishuizen Albertus,
van Putten Michel J. A. M.,
Hofmeijer Jeannette
Publication year - 2019
Publication title -
annals of neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.764
H-Index - 296
eISSN - 1531-8249
pISSN - 0364-5134
DOI - 10.1002/ana.25518
Subject(s) - electroencephalography , coma (optics) , medicine , prospective cohort study , confidence interval , anesthesia , cohort , cardiology , cohort study , psychiatry , physics , optics
Objective To provide evidence that early electroencephalography (EEG) allows for reliable prediction of poor or good outcome after cardiac arrest. Methods In a 5‐center prospective cohort study, we included consecutive, comatose survivors of cardiac arrest. Continuous EEG recordings were started as soon as possible and continued up to 5 days. Five‐minute EEG epochs were assessed by 2 reviewers, independently, at 8 predefined time points from 6 hours to 5 days after cardiac arrest, blinded for patients’ actual condition, treatment, and outcome. EEG patterns were categorized as generalized suppression (<10 μV), synchronous patterns with ≥50% suppression, continuous, or other. Outcome at 6 months was categorized as good (Cerebral Performance Category [CPC] = 1–2) or poor (CPC = 3–5). Results We included 850 patients, of whom 46% had a good outcome. Generalized suppression and synchronous patterns with ≥50% suppression predicted poor outcome without false positives at ≥6 hours after cardiac arrest. Their summed sensitivity was 0.47 (95% confidence interval [CI] = 0.42–0.51) at 12 hours and 0.30 (95% CI = 0.26–0.33) at 24 hours after cardiac arrest, with specificity of 1.00 (95% CI = 0.99–1.00) at both time points. At 36 hours or later, sensitivity for poor outcome was ≤0.22. Continuous EEG patterns at 12 hours predicted good outcome, with sensitivity of 0.50 (95% CI = 0.46–0.55) and specificity of 0.91 (95% CI = 0.88–0.93); at 24 hours or later, specificity for the prediction of good outcome was <0.90. Interpretation EEG allows for reliable prediction of poor outcome after cardiac arrest, with maximum sensitivity in the first 24 hours. Continuous EEG patterns at 12 hours after cardiac arrest are associated with good recovery. ANN NEUROL 2019;86:203–214