z-logo
open-access-imgOpen Access
Giant pulsations as modes of a transverse Alfvénic resonator on the plasmapause
Author(s) -
P. N. Mager,
D. Yu. Klimushkin
Publication year - 2013
Publication title -
earth planets and space
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 74
eISSN - 1880-5981
pISSN - 1343-8832
DOI - 10.5047/eps.2012.10.002
Subject(s) - physics , resonator , substorm , plasmasphere , polarization (electrochemistry) , transverse plane , amplitude , magnetic field , field line , transverse wave , standing wave , excited state , computational physics , quantum electrodynamics , wave propagation , atomic physics , magnetosphere , optics , quantum mechanics , chemistry , structural engineering , engineering
The paper assumes that the giant pulsations are oscillations trapped within a resonator resulting from finite plasma pressure on the outer edge of the plasmapause. This resonator is bounded, across the L-shells, by two turning points allowing the wave energy to be channeled azimuthally. This assumption can explain the basic properties of the giant pulsations: strong localization across magnetic shells, poloidal polarization, presence of a significant compressional component in the Pg magnetic field, the fact that their frequency does not depend on the radial coordinate. The wave field structure both across the L-shells and along the field lines is studied. In order to explain the amplitude modulation it is sufficient to suppose that the resonator is excited by some non-stationary process. Generation by a moving source comprised of substorm-injected particles is considered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom