z-logo
open-access-imgOpen Access
Acyl-Ghrelin Influences Pancreatic β-Cell Function by Interference with KATP Channels
Author(s) -
Julia Kaiser,
Peter KrippeitDrews,
Gisela Drews
Publication year - 2020
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db20-0231
Subject(s) - medicine , endocrinology , ghrelin , somatostatin , sulfonylurea receptor , receptor , agonist , inverse agonist , biology , antagonist , protein kinase a , diazoxide , chemistry , insulin , hormone , kinase , microbiology and biotechnology , diabetes mellitus , glibenclamide
The aim for this study was to elucidate how the hypothalamic hunger-inducing hormone acyl-ghrelin (AG), which is also produced in the pancreas, affects β-cell function, with particular attention to the role of ATP-sensitive K+ (KATP) channels and the exact site of action of the hormone. AG hyperpolarized the membrane potential and decreased cytoplasmic calcium concentration [Ca2+]c and glucose-stimulated insulin secretion (GSIS). These effects were abolished in β-cells from SUR1-knockout (KO) mice. AG increased KATP current but only in a configuration with intact metabolism. Unacylated ghrelin counteracted the effects of AG. The influence of AG on membrane potential and GSIS could only be averted in the combined presence of a ghrelin receptor (GHSR1a) antagonist and an inverse agonist. The inhibition of GSIS by AG could be prevented by dibutyryl cyclic–cAMP or 3-isobutyl-1-methylxanthine and the somatostatin (SST) receptor 2–5 antagonist H6056. These data indicate that AG indirectly opens KATP channels probably by interference with the cAMP/cAMP-dependent protein kinase pathway, resulting in a decrease of [Ca2+]c and GSIS. The experiments with SUR1-KO β-cells point to a direct effect of AG on β-cells and not, as earlier suggested, to an exclusive effect by AG-induced SST release from δ-cells. Nevertheless, SST receptors may be involved in the effect of AG, possibly by heteromerization of AG and SST receptors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom