Effect of Ethylene on the Uptake, Distribution, and Metabolism of Indoleacetic Acid-1-14C and -2-14C and Naphthaleneacetic Acid-1-14C
Author(s) -
Elmo M. Beyer,
Page W. Morgan
Publication year - 1970
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.46.1.157
Subject(s) - ethylene , auxin , chemistry , metabolism , decarboxylation , metabolite , hypocotyl , biochemistry , botany , biology , gene , catalysis
The effect of ethylene on the uptake, distribution, and metabolism of indoleacetic acid (IAA)-1-(14)C, IAA-2-(14)C, and naphthaleneacetic acid (NAA)-1-(14)C in cotton stem sections (Gossypium hirsutum L., var. Stoneville 213) was studied. Stem sections excised from plants pretreated with ethylene for 15 hours transported significantly less (14)C-IAA and (14)C-NAA than control sections. Concomitant features of the reduction of (14)C-IAA transport were an increase in decarboxylation and a trend toward a reduction in total uptake. With (14)C-NAA, however, total uptake was significantly increased, and decarboxylation was unaffected.(14)C-IAA was rapidly converted to indoleacetylaspartic acid and many other metabolites in both control and ethylene-pretreated stem sections. Following transport, similar amounts of (14)C-IAA were recovered in the apical absorbing portion of the control and ethylene-pretreated sections. Significantly more (14)C-IAA metabolites, however, were recovered in this region of the ethylene-pretreated sections.Conversely, (14)C-NAA was metabolized more slowly than (14)C-IAA under identical experimental conditions, with the only major metabolite being naphthaleneacetylaspartic acid. Following transport the apical absorbing portion of ethylene-pretreated stem sections contained significantly more (14)C-NAA than the controls. These results suggested that the disruption of auxin transport by ethylene cannot be explained in terms of a more rapid metabolism of auxin in the treated sections. The increased (14)C-IAA metabolites in the absorbing portion of ethylene-pretreated sections appear to be the result, rather than the cause, of the ethylene-mediated disruption of IAA transport.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom