z-logo
open-access-imgOpen Access
Systematic review of context-aware digital behavior change interventions to improve health
Author(s) -
Kelly Jean Thomas Craig,
Laura C Morgan,
Ching-Hua Chen,
Susan Michie,
Nicole Fusco,
Jane Snowdon,
Elisabeth Scheufele,
T. Gagliardi,
Stewart Sill
Publication year - 2020
Publication title -
translational behavioral medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.819
H-Index - 39
eISSN - 1869-6716
pISSN - 1613-9860
DOI - 10.1093/tbm/ibaa099
Subject(s) - mhealth , behavior change , behavior change methods , psychological intervention , digital health , context (archaeology) , health psychology , wearable technology , health intervention , ehealth , health informatics , computer science , health care , wearable computer , applied psychology , data science , medicine , psychology , public health , nursing , social psychology , paleontology , economics , biology , embedded system , economic growth
Health risk behaviors are leading contributors to morbidity, premature mortality associated with chronic diseases, and escalating health costs. However, traditional interventions to change health behaviors often have modest effects, and limited applicability and scale. To better support health improvement goals across the care continuum, new approaches incorporating various smart technologies are being utilized to create more individualized digital behavior change interventions (DBCIs). The purpose of this study is to identify context-aware DBCIs that provide individualized interventions to improve health. A systematic review of published literature (2013–2020) was conducted from multiple databases and manual searches. All included DBCIs were context-aware, automated digital health technologies, whereby user input, activity, or location influenced the intervention. Included studies addressed explicit health behaviors and reported data of behavior change outcomes. Data extracted from studies included study design, type of intervention, including its functions and technologies used, behavior change techniques, and target health behavior and outcomes data. Thirty-three articles were included, comprising mobile health (mHealth) applications, Internet of Things wearables/sensors, and internet-based web applications. The most frequently adopted behavior change techniques were in the groupings of feedback and monitoring, shaping knowledge, associations, and goals and planning. Technologies used to apply these in a context-aware, automated fashion included analytic and artificial intelligence (e.g., machine learning and symbolic reasoning) methods requiring various degrees of access to data. Studies demonstrated improvements in physical activity, dietary behaviors, medication adherence, and sun protection practices. Context-aware DBCIs effectively supported behavior change to improve users’ health behaviors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here