z-logo
open-access-imgOpen Access
ANALYZING THE USE OF GASEOUS HELIUM AS A PRESSURANT WITH CRYOGENIC PROPELLANTS WITH THERMODYNAMIC VENTING SYSTEM MODELLING AND TEST DATA
Author(s) -
A. Hedayat,
Stuart Nelson,
L. J. Hastings,
R. H. Flachbart,
D. J. Vermilion,
Stephen Tucker,
J. G. Weisend,
John Barclay,
Susan Breon,
Jonathan Demko,
Michael DiPirro,
J. Patrick Kelley,
Peter Kittel,
Arkadiy Klebaner,
Al Zeller,
Mark Zagarola,
Steven Van Sciver,
Andrew Rowe,
John Pfotenhauer,
Tom Peterson,
Jennifer Lock
Publication year - 2008
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.2908511
Subject(s) - propellant , liquid hydrogen , heat exchanger , nuclear engineering , cryogenics , joule–thomson effect , materials science , helium , mass flow , thermodynamics , mechanics , environmental science , hydrogen , aerospace engineering , chemistry , physics , organic chemistry , engineering
Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. A Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Tests were conducted in the Marshall Space Flight Center (MSFC) Multi-purpose Hydrogen Test Bed (MHTB) to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) test liquids. The TVS used comprises a recirculation pump, a Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. A small amount of liquid extracted from the tank recirculation line was passed through the J-T valve and then through the heat exchanger, extracting thermal energy from the bulk liquid and ullage and thereby enabling ...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom